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Figure 1: Novel view synthesis in a synthetic dynamic environment, given 30 known views and camera poses.

ABSTRACT
The long-standing problem of novel view synthesis has many appli-
cations, notably in sports broadcasting. Photorealistic novel view
synthesis of soccer actions, in particular, is of enormous interest
to the broadcast industry. Yet only a few industrial solutions have
been proposed, and even fewer that achieve near-broadcast quality
of the synthetic replays. Except for their setup of multiple static
cameras around the playfield, the best proprietary systems disclose
close to no information about their inner workings. Leveraging
multiple static cameras for such a task indeed presents a challenge
rarely tackled in the literature, for a lack of public datasets: the re-
construction of a large-scale, mostly static environment, with small,
fast-moving elements. Recently, the emergence of neural radiance
fields has induced stunning progress in many novel view synthesis
applications, leveraging deep learning principles to produce photo-
realistic results in the most challenging settings. In this work, we
investigate the feasibility of basing a solution to the task on dynamic
NeRFs, i.e., neural models purposed to reconstruct general dynamic
content. We compose synthetic soccer environments and conduct
multiple experiments using them, identifying key components that
help reconstruct soccer scenes with dynamic NeRFs. We show that,
although this approach cannot fully meet the quality requirements
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for the target application, it suggests promising avenues toward a
cost-efficient, automatic solution. We also make our work dataset
and code publicly available, with the goal to encourage further
efforts from the research community on the task of novel view syn-
thesis for dynamic soccer scenes. For code, data, and video results,
please see https://soccernerfs.isach.be.
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1 INTRODUCTION
Synthesizing novel views of a scene from a sparse sample of im-
ages is a long-standing problem in computer vision [7, 18, 31]. A
notable field of application is sports broadcasting, in which action
replays have a major role in story-telling and performance analysis.
As one of the most popular sports, soccer receives a lot of broad-
cast coverage from top to low-tier competitions all over the world,
with much care given to making the viewer experience ever more
pleasant and engaging. Augmenting the broadcast production of
soccer events with novel-view video synthesis of action replays is
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therefore very attractive to industrial actors, and a real opportunity
for the computer vision research community.

Despite the industry interest in novel view synthesis of soccer
replays, only a few proprietary systems exist on the market. In-
deed, such interest cannot outweigh the need for the highest image
quality in broadcast productions; the industry, therefore, imposes
very high standards in terms of the photorealism of the synthesized
views. One noteworthy system [9] is able to deliver synthetic re-
plays that are stunningly photorealistic, but for a few visual artifacts.
Their setup is composed of dozens of very high-resolution static
cameras, installed all around the soccer field high up above the
bleachers. Their image data are processed by private, proprietary
software running on very powerful hardware. These image data
remain private as well, and equivalent public datasets are simply
nonexistent. The only insight offered by this system to the research
community is the validity of using a static multi-camera setup for
the task.

Even with no image data available, one can reason about the
challenges that arise from using an array of distant static cameras
as a basis for the reconstruction of a soccer environment. Outdoor
sports like soccer are composed of a large static environment, the
stadium, and small dynamic elements, the players and the ball.
Traditional computer vision methods would most likely have to
rely on very high-resolution images, as in [9], to reconstruct an
underlying 3D model of the scene able to faithfully render the
movements of the small dynamic elements. Having to deal with
massive amounts of image data for reconstructing a single, short
soccer action is however not a desirable property for a solution.

Building on the modern deep learning-based paradigm to com-
puter vision problems, neural radiance fields [24] (NeRFs) have
recently become the state of the art for high-quality novel view
synthesis, and have been widely improved and extended to pro-
duce excellent results in very challenging settings. A notable line of
work is dynamic NeRFs, i.e. neural models purposed to reconstruct
spatiotemporal content, as opposed to only spatial, static content.
This, therefore, begs the question: Are dynamic NeRFs suitable for
reconstructing soccer scenes? To find potential answers to this ques-
tion, we propose this exploratory work, in which we make three
important assumptions.

First, we only consider camera setups similar to the one used
by the aforementioned proprietary system [9], deeming it optimal
for the task at hand. Specifically, we use an array of 20 to 30 static
cameras, positioned all around the soccer stadium and pointing
toward the soccer field. This assumption goes well with the working
conditions usually recommended to achieve good performance with
NeRFs. Moreover, most NeRFs assume input views to be calibrated
by third-party Structure from Motion (SfM) tools, which are known
to bring robust results with such camera setups in mostly static
environments, such as a soccer stadium.

Second, we limit our study to synthetic soccer datasets, yet we
believe its results also apply to real data. As already mentioned,
soccer image datasets with the considered camera setups are vir-
tually nonexistent for the public, to the best of our knowledge.
We therefore composed synthetic datasets, using public computer
graphics engines and models. Because we control the cameras in
our 3D virtual environments, this assumption also allows us to leave
camera calibration aspects out of the scope of our work. We are

confident that our findings remain valid when working on real use
cases, given the availability of robust SfM tools, and the reputation
of very good photorealism of NeRFs with real image data.

Third, we only consider general dynamic NeRFs, i.e., dynamic
NeRFs with no domain knowledge, to identify early limitations of
the neural-based reconstruction paradigm in the context of our task.
Another important reason is that domain-specific priors are often
difficult and expensive to produce. For instance, an accurate skeletal
reconstruction of the players would be predictably very useful for
soccer replay synthesis, but is a hard task in itself, especially with
the considered camera setups. Our goal is to avoid resorting to such
priors, which are likely to be complex and costly. This assumption
also has the advantage to make our study potentially insightful
for the use of dynamic NeRFs for other sports than soccer, given
similar camera setups.

We select recent state-of-the-art general dynamic NeRF models
and compare them in three synthetic soccer environments of in-
creasing complexity. Our aim is to progressively transition from
ideal conditions for the considered models, to conditions that are
similar to the optimal camera setup used in [9].

Our contributions could be summarized as follows:
(1) We provide a study of the performance of general dynamic

NeRFs on the task of soccer replay synthesis in increasingly
complex environments. Models are studied as they were
introduced in the literature, then augmented with general,
non-domain specific components that we identify. We close
the study with a higher-level discussion about limitations
and future work.

(2) As we wish to foster research efforts toward solving this
challenging task, we publicly release our code, including
the improving components and experimental settings, and
our complete work dataset, including images, depth maps,
Blender [8] scripts, and camera calibrations for all synthetic
environments. These are all ready-to-use in Nerfstudio [35],
a rich and popular open-source framework for using and
developing NeRF models.

The remainder of this paper is organized as follows. Section 2
provides preliminaries about NeRFs and introduces their extension
to dynamic environments. Section 3 details our experimental setup:
methods, evaluation, and environments. Section 4 showcases and
discusses results. Finally, Section 5 provides a higher-level discus-
sion about the feasibility of using these methods, along with some
paths for improvement.

2 NEURAL SCENE REPRESENTATION
Neural Radiance Fields [24]. The original neural radiance field

(NeRF) model implicitly encodes a scene in the weights of a multi-
layer perceptron (MLP). The model learns to associate density and
color information to any point in space, which allows for render-
ing images using classical volume rendering [15, 23]. This process
is end-to-end differentiable, which allows for training using only
captured views and their associated camera poses. For improving
training and rendering time, more recent methods [6, 26, 34] use a
hybrid approach, leveraging both implicit and explicit representa-
tions, such as voxel grids. Those methods store learnable features,
which are then decoded with an MLP.
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Dynamic NeRFs. Various techniques have been proposed to ex-
tend NeRFs to dynamic reconstruction. Methods such as [11, 27,
30] learn a separate field, known as a deformation network, that
maps each point to its corresponding position in a canonical scene.
Other methods input time to the radiance field. While direct con-
ditioning on time provides poor results [30], indirect conditioning
[1, 12, 13, 19, 33, 37] obtains state-of-the-art results on various pop-
ular benchmarks. Some models leverage domain knowledge, such
as Human NeRFs. They often work by learning the motion of a
skinned multi-person linear model (SMPL [22]) along with its ap-
pearance [28, 29, 42]. A more recent method supports human-object
interactions [21]. These specific models still require complex and
controlled setups. Two non domain-specific models, K-planes and
NeRFPlayer, are of particular interest to us, based on their state-
of-the-art performance on diverse benchmarks, and the approach
they take to the reconstruction of dynamic content.

K-Planes [13]. This model builds upon methods [6, 32] that fac-
torize the 4D space into 6 planes, corresponding to each pair of coor-
dinates. This approach, and concurrent work [5, 36], offer greatly-
improved efficiency with high-quality results. The planes store
feature vectors uniformly in space and time, at increasing scales,
similar to the multiresolution hash encoding used in [26]. The fea-
ture vectors associated with a given point in space and time are
then decoded by a shallow MLP into a density and an RGB color.
K-Planes reaches state-of-the-art performance on various datasets.

NeRFPlayer [33]. This method introduces two main contribu-
tions: (i) a dynamic version of traditional explicit feature storage,
such as the hash encoding from [26], by using a sliding window over
a larger fixed-size feature vector, and (ii) a scene decomposition into
different areas depending on their nature: static, deformed, or new.
Each area is modeled with a different approach, which is mostly
beneficial to monocular setups. On common dynamic multi-view
datasets [19], NeRFPlayer reaches high-quality results, similar to
K-Planes.

3 IMPLEMENTATION
The selected methods are K-Planes [13] and NeRFPlayer [33], out-
lined in Section 2. These versions are implemented in Nerfstudio
[35], an open-source framework that we use for all our experi-
ments. For fair comparisons, shared settings between the models
are identical, such as proposal sampling and scene contraction [2].
Model-specific hyperparameters follow the original implementa-
tions, except for the model size. We increase the hash map size of
NeRFPlayer to 220 with a temporal dimension of 64 and use Ner-
facto [35] as the backbone. We also drop the decomposition from
NeRFPlayer, which mainly benefits monocular setups and results
in unnecessarily large models. We add two additional scales to K-
Planes, resulting in multiscale resolutions from 26 to 211. When
enabled, ray importance sampling based on global medians (ISG) is
employed [19]. Training follows typical Nerfstudio settings: models
are trained for 30,000 iterations using Adam [17] with a learning
rate of 10−2, which takes about 1 to 2 hours on an NVIDIA RTX
3090 GPU for each scene. Unlike typical methods which train using
downsampled images for faster training, we observe improvements

when using full-resolution 1080p images in our environments, with-
out large increases in training time.

We make both our code and datasets publicly available. The for-
mer includes slightly modified versions of K-Planes and NeRFPlayer,
more convenient data management for dynamic environments,
training settings, and other components mentioned in Section 4,
such as ray importance sampling and dedicated metrics. The latter
include training images, calibrated poses, depth maps, Blender files,
and data parsers to readily conduct experiments within Nerfstudio.

3.1 Evaluation
Three metrics are typically used for assessing the visual quality of
novel view synthesis: (i) PSNR, which computes differences at the
pixel level, (ii) SSIM [38], which takes structural changes into ac-
count, and (iii) LPIPS [41], based on features in deep convolutional
networks which better correlate with human judgment. Quantita-
tive evaluation is known to be a difficult task in novel view syn-
thesis applications and, sometimes, to hardly reflect visual quality
accurately. Environments like ours make it even more challeng-
ing. Indeed, the dynamic content of interest is the players and the
ball, which occupy a small region of the images. As the metrics are
computed over the whole image, they are barely affected by the
reconstruction quality of small elements of interest. Furthermore,
we consider dynamic scenes, and computing per-frame metrics con-
veys no information about the temporal consistency of the results.

While the first issue can be tackled in synthetic environments
by including additional views close to the content of interest, it is
often not possible in real conditions. To address this, we propose
alternative versions of these three metrics which are computed in
restricted bounding boxes around the dynamic content. The boxes
can be automatically generated by simply using an object detection
model such as RetinaNet [20]. We refer to them as focused metrics.

To illustrate them, we compare default and focused metrics com-
puted between one ground-truth evaluation image and novel views
generated by four different versions of K-Planes, (a) to (d), where
we vary the depth and width of the MLP decoder, which causes
differences in prediction quality. The predicted images and associ-
ated PSNRs are depicted in Fig. 2. The other metrics, i.e., SSIM and
LPIPS, are reported in Tab. 1. The predictions highlight the neces-
sity for alternative evaluation methods. In (a, b, c), the bleachers
are poorly reconstructed, which strongly affects all metrics, as only
(d) obtains a good score. However, the player is only missing in (a),
which is better reflected by the focused metrics. Also, artifacts are
present around the player in (b), which underlines the need for not
restricting the bounding box right around the player.

Despite these improvements, the new metrics still convey no
temporal information. Furthermore, they fail if the players or the
ball are not detected. For those reasons, qualitative evaluation is
always preferred. With a focus on assessing the reconstruction
quality of the player, we render novel viewpoints along camera
paths closer to the player than the distant views used for training.
In our synthetic scenes, we include additional close-up views for
quantitative evaluation, which are useful when the focused metrics
fail, such as in the Players environment, in Section 4.3. Otherwise,
one camera is excluded from the training set and used for evaluation
only.
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Figure 2: Illustration of focused metrics. Each image is a prediction from the same evaluation camera pose using different
model settings. The black box represents the window in which the focused metrics are computed. When using the default
metrics (shown in red), only the fourth model achieves a high score, primarily due to its well-reconstructed bleachers. With
the focused metrics (shown in blue), only the first model receives a low score as it fails to accurately reconstruct the dynamic
content of interest.

Table 1: Comparing default and focusedmetrics for the novel
views shown in Fig. 2. The default metrics are best on scenes
where static elements are better reconstructed, while the
dynamic-focused metrics better reflect the quality of the re-
gion of interest. Best results in bold, second-best underlined.

Default Focused
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

(a) 28.39 0.724 0.240 27.60 0.735 0.254
(b) 27.41 0.745 0.218 35.30 0.818 0.079
(c) 27.15 0.737 0.231 38.12 0.882 0.039
(d) 34.43 0.805 0.149 37.61 0.924 0.018

3.2 Environments

Figure 3: Illustration depicting the camera placements for
each setup. The player position is highlighted in red for the
Single Player setups. The 30 close-up cameras are represented
in black, the 20 broadcast-style cameras are shown in yellow,
and the 30 stadium-wide angles are denoted in blue. Exam-
ples of associated training views can be observed in Fig. 4, 5.

To the best of our knowledge, most sports datasets are limited to
a few synchronized cameras, and there are no public datasets that
include dozens of synchronized and calibrated views. For example,
the KTH Multiview Football Dataset II [16] only contains three
synchronized cameras, that often focus on a single player.

Figure 4: Camera setups for the "Single Player" scene. Left:
close-up cameras are placed around the players, similar to
common datasets for novel view synthesis. Right: cameras
are placed around the field and oriented toward the player,
typical of broadcast conditions.

Figure 5: Example training view for the "Players" scene, along
with a close-up view dedicated for evaluation (bottom left).
The players occupy a very small part of the images.

In this exploratory work, we build synthetic environments to
circumvent the lack of real data. The scenes are of increasing com-
plexity, starting from relatively close-up views, commonly used
with NeRFs, then using more distant cameras giving a field of view
similar to what is used in broadcast coverage, and finally consider-
ing even more distant cameras placed in the bleachers covering the
whole field with more players. The different setups are illustrated
in Fig. 3. This allows us to progressively tackle the challenges that
occur with soccer environments, mainly the reconstruction of small
dynamic content. All cameras are static and the environments are
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built using Blender [8] with player models from Adobe Mixamo
[14], and a stadium model available under a free CC0 license [25].

Single Player: Close-up Views. This synthetic environment fea-
tures a single player placed at the center of the field, shooting a ball.
This first camera setup is composed of 30 close-up views around
the player and resembles typical conditions of benchmarks like
DyNeRF [19]. An example training image is depicted in Fig. 4 (left).

Single Player: Broadcast-style Views. Within the same environ-
ment, we consider a second camera configuration that features
20 views placed around the field, whose field of view is close to
broadcast conditions. The player represents only a tiny portion of
the images. An example training image is depicted in Fig. 4 (right).

Players: Stadium-wide Views. This more complex environment
features several players and balls interacting all over the field, cap-
tured by 30 wide-angle cameras placed high up in the bleachers
and are thus much more distant from the field. Six additional cam-
eras, used exclusively for evaluation, are placed near the players
for more meaningful results. In this setup, training views cover the
whole field at all times but cover very few details about the players
and balls due to their large distance. An example training view is
depicted in Fig. 5.

4 EXPERIMENTS
In this section, we assess the performance of K-Planes [13] and
NeRFPlayer [33] in increasingly complex environments, each de-
scribed in Section 3.

4.1 Single Player: Close-up Views
As a first attempt, we run the original models from the initial pa-
pers in similar conditions to traditional datasets [4, 19]. The player
occupies a large region of the training images, is captured by 30
cameras, and performs smooth motion. In these settings, the models
are able to reconstruct the stadium flawlessly. The player’s motion
is reconstructed, but the texture is blurry, even when using larger
models. The ball is not reconstructed when moving fast in the air
and disappears.

We can circumvent these issues by employing an improved pixel
sampling strategy. Traditionally, training rays are traced by uni-
formly sampling pixels although dynamic content, especially if
small, should be sampled more often. In [19], several improved
strategies are described, known as Ray Importance Sampling (IS).
This new sampling strategy, which prioritizes sampling dynamic
content pixels, is particularly necessary for setups like ours, con-
sidering the scale of dynamic objects, even in this first more ideal
environment. This general modification, which can be applied to
both models, yields substantial improvements in quality and train-
ing time. Renderings are performed around the player with both
models, with and without ray importance sampling, and are de-
picted in Fig. 6. Associated metrics, computed using a dedicated
evaluation camera, are reported in Tab. 2. Visual details are recov-
ered much quicker, and final results are drastically more detailed
when using importance sampling. Overall, results are similar be-
tween NeRFPlayer and K-Planes when using similar model sizes,
as depicted in Fig. 6. NeRFPlayer tends to recover slightly more
details on the player but produces more artifacts around it. While

it is not able to reconstruct the ball when it is in the air, K-Planes
manages to reconstruct it, although ghosting effects appear. When
not using importance sampling, the ball is never reconstructed.
Here, the use of focused metrics barely affects our interpretation of
the results, due to the player’s scale in the images, which causes the
bounding boxes to cover a large part of the view. While the focused
PSNR improves when using importance sampling, the other metrics
sometimes degrade, which does not support qualitative results from
Fig. 6. This may be explained by the fact that IS helps to partially
reconstruct the ball, which introduces artifacts.

4.2 Single Player: Broadcast-style Views
While the models perform well with close-up cameras, such views
are usually not available in practical applications. Here, we experi-
ment with the same scene but observed by more distant training
views, which are positioned like broadcast cameras, all around the
field.

Example renderings, using ray importance sampling, are de-
picted in Fig. 7. The player is still reconstructed accurately, although
less detailed, compared to the closer camera setup. In these new
conditions, importance sampling is even more necessary, as the
player is barely reconstructed without it. However, even with IS, the
ball is not reconstructed when in motion. Instead, artifacts appear
everywhere in the direction of cameras.

4.3 Players: Stadium-wide Views
This final synthetic environment moves further away from the
center of the scene and features 30 wide-angle cameras, located
high in the bleachers, that cover the whole field. Many players are
present on the soccer pitch, interacting with each other and with
balls. This setting is particularly challenging, due to the very small
visibility of players in the training images.

Results are depicted in Fig. 8 and 9. Even in this very challenging
configuration, the players are reconstructed and we can distinguish
their motion. However, even with larger models, 1080p training
images, and ray importance sampling, the results remain blurry.
The ball is barely reconstructed when moving slowly, and not at
all when moving fast (e.g., when being shot). Such camera setups,
therefore, seem to be limited for detailed results, at least when using
no domain knowledge.

5 DISCUSSION
In this exploratory work, we compared recent state-of-the-art dy-
namic NeRF models, i.e., K-Planes [13] and NeRFPlayer [33], in
increasingly complex soccer environments, to assess their readi-
ness for broadcast-quality novel-view video synthesis of soccer
replays. In the ideal NeRF setup, where close-up cameras capture
detailed views of the target moving objects, the models reached
great reconstruction quality. However, when using distant views
in a camera setup similar to the best-result proprietary system [9],
the results offered by general dynamic NeRFs drastically degrade.
In such distant camera setups, we showed that incorporating ad-
ditional components to the original models, like ray importance
sampling [19], becomes an absolute necessity.

We tried to avoid working with very high-resolution images,
as opposed to [9], limiting our input image data to 1080p. Indeed,
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Table 2: Quantitative results for both models with and without ray importance sampling (see Fig. 6). Due to using closer cameras,
the focused metrics have a limited impact on the results.

Default Focused
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Without
Importance Sampling

K-Planes 32.84 0.786 0.167 34.41 0.816 0.126
NeRFPlayer 31.54 0.754 0.211 34.55 0.807 0.181

With
Importance Sampling

K-Planes 32.53 0.751 0.199 35.06 0.788 0.156
NeRFPlayer 31.26 0.721 0.225 34.78 0.781 0.191

Figure 6: Comparative results between K-Planes and NeRFPlayer on the Single Player environment with close-up cameras, with
and without ray importance sampling (IS). Overall, both models obtain similar results. NeRFPlayer tends to recover slightly
more details on the player, possibly due to the factorization of K-Planes, but induces more artifacts and does not manage to
reconstruct the ball when in the air. Importance sampling drastically improves results for both models and allows K-Planes to
recover the ball when in the air.

even though increasing the image resolution is an obvious path of
improvement toward capturing fine details, the massive amounts of
data thus generated are close to being prohibitive computationally,
and we wanted to explore more economical solutions. For simi-
lar reasons, we avoided resorting to domain-specific priors in this
study, as such priors can be arduous and costly to produce, e.g.,
an accurate skeletal reconstruction of the players. Assuming such

restrictions, and despite our improving components, we must con-
clude that general dynamic NeRF models may fall short of meeting
the high-quality requirements of the broadcast industry for novel
view synthesis of soccer replays.

Although it was not the focus of our work, another inconve-
nience of using dynamic NeRFs in broadcast applications might be
their time performance. Indeed, the models we selected require one
hour to train on thirty 4-second clips and 5 minutes to render a
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Figure 7: Novel views synthesis in the Single Player environment using a camera setup similar to broadcast conditions. Results
are obtained from K-Planes with Ray Importance Sampling. The player is well reconstructed, but its texture is blurrier when
compared to using closer cameras. Despite the utilization of Importance Sampling, the model fails to accurately reconstruct
the ball in motion (on the right).

Figure 8: Ground truths (top) and predictions (bottom) for the Players environment from close-up views dedicated to evaluation.
In these difficult conditions, the players are still reconstructed, although quite blurry.

Figure 9: Additional novel views synthesis results in the Players environment. In these challenging conditions, the motion and
position of the players are correctly reconstructed, albeit significantly blurry. The ball is not reconstructed and causes artifacts
visible on the whole field (leftmost image).

10-second video (about 1FPS for 1080p rendering). However, we be-
lieve that training times could very certainly be lowered, notably by
pre-training a model for the empty stadium. Nonetheless, even the
most recent models [37] require more than 15 minutes of training,
which while being unsuitable for live replay, might fit post-match
applications.

Still, we believe that dynamic NeRFs could play an important
role as the core part of a fully satisfying solution. Following the
same line of work as what was done in our study, a first path of im-
provement would be to try incorporating other general components
into dynamic NeRFs. The visibility loss from Nerfbusters [39], the
improved proposal sampling from Zip-NeRF [3], and the restorer
from NeRFLiX [43] are promising components that would certainly

be beneficial to a detailed reconstruction of soccer scenes in dis-
tant camera setups. Nevertheless, using such general improving
components may still not be enough for the task.

Although using absolutely no domain knowledge is appealing,
it may be necessary to use some domain-specific components to
reach broadcast-quality results as well as a better time performance
during training, more in line with broadcast time constraints. Yet,
one should be cautious of the complexity and costs associated
with bringing specific models within a solution. For instance, while
showing impressive results in controlled working conditions, NeRFs
that focus on human reconstruction [21, 40, 42] are not directly
usable with a distant camera setup such as ours, and would require
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considerable adaptation to reconstruct humans inmore diverse, less-
constrained configurations, such as multiple humans at arbitrary
positions.

As manifest as increasing the input image resolution, another
path of improvement is to obtain and leverage more zoomed-in
input views, together with the distant views given by our cho-
sen camera setup inspired by [9]. Our study indeed showed that
broadcast-style views may capture enough details to render novel
views with near-acceptable quality for the target application. Such
cameras could not be static, though, and it is unrealistic to suggest
manning dozens of additional broadcast-style cameras with oper-
ators tasked to follow the action. This naturally leads to consider
using the image data coming from the actual broadcast cameras,
which are used to cover the soccer event. Including broadcast mov-
ing cameras within the reconstruction task would introduce new
difficulties, such as motion blur, less accurate camera calibration,
view sparsity for the zoomed-in region of interest, and the inade-
quacy of importance sampling as it relies on static cameras. The
benefits could however outweigh the difficulties. First, robust SfM
tools could still be used with satisfaction in a mixed setup of dis-
tant static cameras and broadcast moving cameras, to retrieve the
calibration of the moving cameras at all times. Second, using such
a mixed setup could allow using less static cameras than the dense
20-30 camera array considered in this study. A case could even be
made that broadcast cameras become the main source of informa-
tion in an economical solution, using all available NeRF extensions
that deal with sparse camera setups, such as depth supervision [10]
based on what SfM tools output for the scene structure, along with
the camera calibrations.

An indirect, but very important path of improvement is the de-
sign of better evaluation metrics for dynamic NeRFs. Evaluating
these models in less-frequently considered dynamic environments,
such as soccer, poses significant challenges. In our study, we pro-
posed a simple yet better method for computing evaluation met-
rics. However, much more could be made, particularly in detecting
general moving content, incorporating temporal information, and
finding ways to accurately reflect the challenging reconstruction
quality of the ball. Proper evaluation of these models is crucial be-
cause, without accurate assessment, it is difficult to determine the
readiness of a method for real-world applications.

Finally, also an indirect path of improvement: acknowledging
and remedying the lack of public multi-view soccer datasets. Even
a single image dataset of a dozen synchronized cameras captur-
ing a few soccer actions would be of tremendous interest to the
community. The synthetic environments we built are a modest
proxy of such a dataset, that we publicly release along with all the
code used for the experiments, both ready to use in Nerfstudio, an
open-source framework for NeRF research. We strongly encour-
age building richer datasets, both by extending our scenes and
by recording real data using enough synchronized and calibrated
cameras.
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